In (II), (III) and (IV) all are directed to O atoms, usually O(7) of adjacent molecules, but in one case to the O of a water molecule. In both (I) and (V) one of the bonds is with the N(1) atom of a second molecule and the other with the O(7) of a third molecule.

(c) N(1) is always hydrogen-bonded to another N atom, variously equivalents of N(9), N(3) and N(1) [in (IV) a half-hydrogen is involved].

(d) The N(3)-H(18) group is always bonded. In two cases it bonds to an N(1) equivalent. In (I) the bond is with the O of a water molecule.

(e) The carbonyl oxygen O(7) forms one, two or three bonds. If water is absent all bonds are with N(9) equivalents. If water is present (I and III) O(7) forms hydrogen bonds with it.

As the above discussion indicates, the hydrogen bonding exhibited in the present structure is directionally compatible with the triple hydrogen-bond scheme for the pairing of guanine and cytosine in DNA as first suggested by Pauling & Corey (1956). However, in the present structure we find instead a double hydrogen-bond pattern between molecules within a ribbon, as occurs in crystalline *N*-methylcytosine (V). This preference could be associated with packing considerations due to the bulk of the methyl group and/or the tendency noted for the carbonyl O to form hydrogen bonds with water where present, as it is in most biological contexts.

We wish to express thanks to Mr D. C. Craig of the School of Chemistry for collecting the intensity data and assisting in computing, Dr A. G. Mackinlay of the School of Biochemistry for helpful discussions, and Miss Y. Rodriguez of the School of Physics for preparing the figures from diagrams drawn by *ORTEP* (Johnson, 1976). We thank the University of New South Wales for the provision of computing time on the University CDC Cyber computer.

References

- BARKER, D. L. & MARSH, R. E. (1964). Acta Cryst. 17, 1581–1587.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1964). ORFFE. Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee.
- COULONDRE, C., MILLER, J. H., FARABAUGH, P. J. & GILBERT, W. (1978). *Nature (London)*, **274**, 775–780.
- DAVIDSON, J. F. (1976). *The Biochemistry of the Nucleic Acids*, p. 83 ff. London: Chapman & Hall.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
- JEFFREY, G. A. & KINOSHITA, Y. (1963). Acta Cryst. 16, 20-28.
- JOHNSON, C. K. (1976). ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
- MCCLURE, R. J. & CRAVEN, B. M. (1973). Acta Cryst. B29, 1234–1238.
- MAIN, P., WOOLFSON, M. M. & GERMAIN, G. (1969). LSAM. A System of Computer Programs for the Automatic Solution of Centrosymmetric Crystal Structures. Univs. of York, England, and Louvain, Belgium.
- MARSH, R. E., BIERSTEDT, R. & EICHHORN, E. L. (1962). Acta Cryst. 15, 310-316.
- MATTHEWS, F. S. & RICH, A. (1964). Nature (London), 201, 179–180.
- PAULING, L. & COREY, R. B. (1956). Arch. Biochem. Biophys. 65, 164–181.

Acta Cryst. (1981). B37, 1564–1568

X-ray Structure Analysis and Molecular Conformation of *tert*-Butyloxycarbonyl-L-prolylproline (Boc-Pro-Pro)

By M. E. KAMWAYA, O. OSTER AND H. BRADACZEK

Institut für Kristallographie, Freie Universität Berlin, Takustrasse 6, D-1000 Berlin 33, Federal Republic of Germany

(Received 18 December 1980; accepted 4 February 1981)

Abstract

 $C_{15}H_{24}N_2O_5$ is orthorhombic, space group $P2_12_12_1$, with a = 16.968 (1), b = 14.490 (7), c = 6.664 (9) Å, V = 1638.45 Å³, $M_r = 312.39$, $D_o = 1.2555$, $D_c = 1.266$ Mg m⁻³; F(000) = 672, Z = 4. The final R = 3.6% for 1492 reflexions. Molecules are joined in pairs 0567.7408/81/081564-05\$01.00 by a hydrogen bond $O \cdots OH$, 2.613 Å. C^{α} is *cis* relative to the O atom of Boc and is *trans* relative to the C^{α} of the following ring. The absolute configuration of the non-centrosymmetric structure and the molecular conformation were determined by anomalous dispersion. The groups $NC^{\alpha}C^{\nu}C^{\delta}$ of the two five-membered rings are fairly planar. In both cases C^{β} is © 1981 International Union of Crystallography

O'i

markedly displaced from the best plane and deviates by +0.45 and -0.57 Å, and N' and C' for proline ring I as well as C^{α} and C^{δ} for ring II are on the same side as the carboxyl C' atoms. Therefore, Boc-Pro-Pro is C_s -C^{*v*}-endo (C^{*β*}-exo) for the two proline rings. This proline derivative belongs to conformation B, since the dihedral angles $\chi_1 = 27.0^{\circ}$ and $\chi_{11} = 38.4^{\circ}$ have positive values.

Introduction

Proline, a cyclic amino acid, is regarded as a helix breaker because its presence at the amino terminal end of a polypeptide causes steric interactions for the preceding amino acids, especially when there is a C^{β} atom in its side chain. In addition to steric interactions from neighbouring amino acids at the terminal end, there are steric interactions of the carboxyl group of the proline and, in a polypeptide chain, of the amide of the carboxyl group with the pyrrolidine, notably its C^{β} -CH₂ group (Schimmel & Flory, 1968).

To study the cause of these neighbouring-group effects along a polypeptide chain after or before the position of a proline residue and eventually to come to some conclusions concerning protein conformations, it is essential to study peptides containing proline with different side residues at the amino and carboxyl termini of proline, or study model substances to generalize certain aspects, in particular to obtain the conformation of cyclic pyrrolidine systems in proline. The model system used here is tert-butyloxycarbonyl-L-prolylproline (Boc-Pro-Pro).

Experimental and results

The crystals were grown from ethyl acetate with a few drops of petroleum ether added. Approximate cell dimensions and space-group information were obtained from Weissenberg photographs. The θ -2 θ mode with the three-measurements technique was adopted (Dreissig, 1969; Allen, Rogers & Troughton, 1971). 1628 reflexions were collected in the θ -2 θ scan range 3-70° (Cu Ka radiation, $\lambda = 1.5418$ Å) of which 146 were considered unobserved with $I < 2\sigma(I)$. No absorption correction was applied (diameter of crystal <0.8 mm).

Structure determination and refinement

The phase problem was solved with MULTAN 77 (Main, Woolfson, Lessinger, Germain & Declercq, 1977). An overall temperature factor ($B = 5.0 \text{ Å}^2$) and scale factor were evaluated (Wilson, 1942) and used to compute normalized structure factors (E's) (Karle & Hauptman, 1956). From three reflexions in the starting set and 400 E values >1.8 all phases could be evaluated. The E statistics confirmed a non-centrosymmetric structure. R was 38.84%. All non-hydrogen atoms could be located. Least-squares refinement with an overall isotropic temperature factor of 5.0 Å^2 was carried out (Stewart, Kruger, Ammon, Dickinson & Hall, 1976). Anisotropic temperature factors for all heavy atoms were used for further refinement and all H atoms were located from a difference synthesis. Further refinement reduced R to 0.037.

Determination of the absolute configuration

At the end of the refinement additional cycles were required including dispersion to differentiate between

Table 1. Atomic coordinates and temperature factors

 $T = \exp(-8\pi^2 U \sin^2 \theta / \lambda^2)$ for H atoms and $B_{eq} = 8\pi^2 U_{eq}$ for O, N and C (Willis & Pryor, 1975).

	x	У	Ζ	B_{eq} (Å ²)
0'	0.6023(1)	0.3745(1)	1.1699 (3)	$5 \cdot 1 (1)$
O'_1	0.6376(1)	0.4367(2)	1.4702(4)	6.7(1)
O'_2	0.7296(1)	0.1048(1)	1.2531(3)	5.5(1)
0,	0.7860(1)	0.0418(1)	0.8623(4)	5.5(1)
04	0.7809(1)	0.0410(1)	0.8023(4)	$5 \cdot 5 (1)$
U ₅	0.0830(1)	-0.0343(1)	0.0704(4)	5.5(1)
N ₁	0.7281(1)	0.3833(1)	$1 \cdot 2483 (4)$	3.0(1)
N ₂	0.6890(1)	0.1905(1)	0.9333(4)	4.0(1)
C ₁	0.5178(1)	0.39/4(2)	$1 \cdot 1824(5)$	$5 \cdot 1 (1)$
C ₂	0.4795 (2)	0.3437(4)	$1 \cdot 34 / 3 (8)$	8.1(3)
C,	0.4879 (2)	0.3677 (3)	0.9810(7)	7.0 (2)
C₄	0.5076 (2)	0.5007 (3)	1.2027 (8)	$7 \cdot 1(3)$
C's	0.6541 (2)	0.4016 (2)	1.3116 (5)	4.7(1)
Ce	0.7466 (1)	0.3321 (2)	1.0669 (6)	4.9(1)
C	0.8367 (2)	0.3384 (2)	1.0580(1)	7.9 (4)
C ^v ₈	0.8619 (2)	0.3498 (4)	1.2650 (1)	9.4 (5)
Ců	0.7968 (2)	0.4020 (2)	1.3727 (8)	7.3 (3)
C'_10	0.7202 (1)	0.2330(1)	1.0900 (4)	3.8(1)
C ^a ₁₁	0.6577 (1)	0.0973 (2)	0.9504 (5)	4.3 (1)
C_{12}^{β}	0.5866 (2)	0.0992 (2)	0.8166 (7)	6.4 (2)
C ^v ₁₃	0.6142 (2)	0.1568 (3)	0.6464 (7)	6.9 (1)
C	0.6676 (2)	0.2295 (2)	0.7354 (5)	6.0(1)
C.	0.7189(2)	0.0270(1)	0.8885 (4)	3.8 (0)
H.(O')	0.720 (2)	-0.092 (3)	0.840 (6)	0.10(1)
H.(C.)	0.502(2)	0.362 (2)	1.462 (5)	0.07 (9)
$H_{1}(C_{1})$	0.494 (3)	0.271(4)	1.326 (7)	0.12(2)
H ₁ (C ₁)	0.423(3)	0.361(3)	1.327 (7)	0.11 (Ì)
H.(C.)	0.433(2)	0.383(3)	0.980 (6)	0.09 (1)
$H_{1}(C_{1})$	0.522(3)	0.402(3)	0.860 (8)	0.11(1)
$H_{2}(C_{3})$	0.499(2)	0.297(3)	0.954(5)	0.08 (1)
$H_{3}(C_{1})$	0.452(2)	0.517(3)	1.178(6)	0.09(1)
$H(C_4)$	0.546(4)	0.539(4)	1.110(1)	0.17(3)
$H_2(C_4)$	0.523(3)	0.515(3)	1.350(7)	0.11(1)
$H_{(C^{\alpha})}$	0.720(2)	0.363(2)	0.948(5)	0.07 (9)
$H_1(\mathbb{C}_{\ell})$	0.857(2)	0.288(3)	0.005 (6)	0.10(1)
$\Pi_1(\mathbb{C}_7)$	0.857(2)	0.200(3)	0.969(8)	0.12(2)
$\Pi_2(C_1)$	0.010(3)	0.370(3)	1.265 (8)	0.12(2)
$H_1(C_8)$	0.910(3)	0.373 (3)	1.205(0)	0.17(2)
$\Pi_2(\mathbb{C}_8)$	0.001(4)	0.202(3)	1 408 (6)	0.09(1)
$\Pi_1(\mathbb{C}_{\hat{g}})$	0.764(2)	0.399(3)	1.453(0)	0.09(1)
$\Pi_2(C_5)$	0.609(2)	0.403(3)	1.333(7)	0.10(1)
$\Pi_1(\mathbb{C}_{11}^n)$	0.042(2)	0.003(2)	1.101(3)	0.13(0)
$\Pi_1(\mathbb{C}_{12}^n)$	0.5/1(3)	0.033(4)	0.702(0)	0.11(1)
$\Pi_2(\mathbb{C}_{12}^r)$	0.340(3)	0.140(3)	0.009(0)	0.12(2)
$H_1(U_{13})$	0.000(3)	0.110(3)	0.502(8)	0.13(2)
$H_2(C_{13})$	0.576(3)	0.190(3)	0.391(8)	
$H_1(C_{14})$	0.648 (2)	0.289(3)	0.762(7)	0.10(1)
$H_2(C_{14}^o)$	0.723 (3)	0+232 (3)	0+663 (7)	0.12(1)

Table 2. Bond lengths (Å) and angles (°)

\mathbf{c}	1 405 (6)		1 5 10 (6)
$C_1 - C_2$	1.493 (0)	$C_{i} = C_{j}$	1.319(0)
$C_1 - C_3$	1.498 (0)	$C_{10} - O_3$	1.230 (4)
$C_1 - C_4$	1.513(5)	$C_{10} - N_2$	1.323 (4)
$C_1 - O_1'$	1.4/4 (3)	$N'_2 - C''_{11}$	1.456 (3)
$O'_1 - C'_5$	1.348 (4)	$N'_2 - C^{o}_{14}$	1.480 (4)
C'_5-O'2	1.206 (4)	$C_{11}^{\alpha} - C_{12}^{\beta}$	1.500 (4)
$C'_5 - N'_1$	1.351 (4)	$C_{12}^{\beta} - C_{13}^{\delta}$	1•484 (6)
$N'_1 - C^a_6$	1.453 (4)	$C_{13}^{\nu} - C_{14}^{\delta}$	1.511 (6)
$N'_1 - C_9^{\delta}$	1.456 (5)	$C_{11}^{\alpha} - C_{15}'$	1.512 (4)
C [°] ₆ −C ^β	1.533 (4)	C'15-O4	1.186 (3)
$C_{6}^{\alpha} - C_{10}'$	1.512 (3)	C' ₁₅ -O ₅	1.312 (3)
$C_{7}^{\beta}-C_{8}^{\nu}$	1.454 (10)		
$C_{2}-C_{1}-C_{3}$	111.2 (3)	$C_{6}^{a}-C_{10}^{\prime}-N_{2}^{\prime}$	118.7 (2)
$C_{1} - C_{1} - C_{4}$	113.6 (3)	$C_{6}^{a}-C_{10}^{\prime}-O_{1}^{\prime}$	118.6 (2)
$C_{1}-C_{1}-C_{1}$	109.0 (3)	C ^g -C ^g -C'	110.9 (2)
$O'_{1}-C_{1}-C_{2}$	110.3(3)	$C^{k} - C^{k} - C^{k}$	106.9 (3)
$0'_{-}C_{-}C_{-}C_{-}$	102.4 (2)	$O'_{1}-C'_{1}-N'_{2}$	122.7(2)
$0^{\prime}_{-}C$	109.8 (2)	$C_{10}^{\prime} - N_{2}^{\prime} - C_{11}^{\prime}$	$121 \cdot 1$ (2)
$O'_{-C'_{-N'_{-N'_{-N'_{-N'_{-N'_{-N'_{-N'_{-N$	109.3(3)	$C_{10}^{\prime} - N_{2}^{\prime} - C_{10}^{\prime}$	128.6(2)
$C_{-0}^{\prime} - C_{-}^{\prime}$	121.9(2)	$N'_{2} - C'_{3} - C'_{4}$	110.7(2)
$O'_{-}C'_{-}N'_{-}$	124.9(3)	$N'_2 - C^{\alpha}_3 - C^{\beta}_3$	$103 \cdot 3(2)$
$O'_{1}-C'_{2}-O'_{3}$	125.8(2)	$N'_{2} - C'_{3} - C'_{3}$	$103 \cdot 3$ (3)
C' - N' - C'	124.1(2)	$C^{\alpha} - C^{\beta} - C^{\gamma}$	$102 \cdot 2 (3)$
C' = N' = C'	122.0(3)	$C^{\alpha}_{11} = N'_{12} = C_{13}$	102 2 (3) 109.5 (2)
N'-C ^o -C ^b	$\frac{102}{102.6}$ (3)	$C^{\circ}_{11} - C'_{12} = 0$	105.9(2)
$N' - C^a - C'$	102.0(3) 109.7(2)	$C_{11}^{\circ} = C_{13}^{\circ} = 0_{4}^{\circ}$	123^{1} (2) 100.5(2)
$N' = C_{\delta}^{\delta} = C_{1}^{\delta}$	102.7(2)	$O_{11} - C_{15} - O_{5}$	103-5 (2)
$C^{\alpha} = N' = C_{\beta}$	113.3(2)	$C^{\beta} - C^{\gamma} - O^{\delta}$	124.0(2) 106.3(2)
$C_6 - C_{\beta}^{\beta} - C_{\beta}^{\beta}$	105.3(2)	$C_{12}^{\beta} - C_{13}^{\alpha} - C_{14}^{\prime}$	100.3(3)
U6-U7-Ug	103-3 (4)	Un=Un=Un	113.1(2)

Table 3. Torsion angles (°)

$C_1 - O'_1 - C_2 - N'_1$	-171.0(2)
$O'_{-C'-N'_{-C'}}$	-177.8(3)
$O' - C' - N' - C^{a}$	-7.0(4)
$C' N' C^{\delta} C'$	$-1.0(4) \omega_1$
$C_5 - N_1 - C_5 - C_8$	$100.4(3) \theta_1^{-1}$
$C_5 - N_1 - C_6 - C_7$	$1/5.6(3)\theta_1^{i_1}$
$C_5 - N_1 - C_6 - C_7$	$175.6(3) \theta_1^{IV}$
$C'_{5}-N'_{1}-C'_{6}-C'_{10}$	$-66.6(3) \varphi_1$
$N'_1 - C'_6 - C'_{10} - O'_3$	$-39.4(3)\psi_{1}$
$N'_1 - C^{\alpha}_6 - C'_{10} - N'_2$	$141.4(2)\psi_2$
$N_1'-C_6^{\alpha}-C_7^{\beta}-C_8^{\beta}$	$27.0(4)\chi_{1}$
$C_{\delta}^{a}-C_{\delta}^{\beta}-C_{\delta}^{\gamma}-C_{\delta}^{\delta}$	$-31 \cdot 1$ (4) χ_2
$C_{k}^{k}-C_{k}^{i}-C_{k}^{i}-N_{1}^{i}$	$22.7(4) \chi_{1}$
$C_{k}^{i} - C_{k}^{i} - N_{i}^{i} - C_{k}^{i}$	$-5.3(4) \gamma$
$C_{i}^{k}-C_{i}^{k}-C_{i}^{k}-C_{i}^{k}$	$-90.3(4)\theta'$
$C_{i}^{s} - N_{i}^{\prime} - C_{i}^{s} - C_{i}^{k}$	$-12.9(3)\theta$
$C_{-N'-C_{-C'}}^{\circ}$	$104.0(3) \theta''$
$C_{0}^{\alpha} - C_{1}^{\prime} - N_{1}^{\prime} - C_{0}^{\delta}$	7.0(4)
$C_6 - C_{10} - N_2 - C_{14}$	-175.8(2)
$C_{6} - C_{10} - R_{2} - C_{11}$	$-175.8(2) \omega_2$
$C_{10} = N_2 = C_{14} = C_{13}$	$-104.0(3)\theta_2$
$C_{10} = N_2 = C_{11} = C_{12}$	$142.8(3)\theta_2^2$
$C_{10} - N_2 - C_{11} - C_{15}$	$-95 \cdot 1(3) \varphi_2$
$N_2 - C_{11}^a - C_{12}^p - C_{13}^p$	$38.4(3)\chi_{11}$
$C_{11}^{\alpha} - C_{12}^{\beta} - C_{13}^{\beta} - C_{14}^{\beta}$	$-35.7(4)\chi_{22}$
$C_{12}^{\mu} - C_{13}^{\nu} - C_{14}^{o} - N_{2}^{\prime}$	$18.9(4)\chi_{33}$
$C_{13}^{\nu} - C_{14}^{\delta} - N_2^{\prime} - C_{11}^{\alpha}$	5·9 (3) χ ₄₄
$C_{14}^{\delta} - N_2' - C_{11}^{\alpha} - C_{12}^{\beta}$	$-27.9(3)\theta_{2}$
$C_{14}^{\delta} - N_2' - C_{11}^{\alpha} - C_{15}'$	94.2 (3) $\theta_{2}^{''}$
$N_{2}^{\prime}-C_{11}^{\alpha}-C_{13}^{\prime}-O_{3}$	$-168.7(2)\psi_{22}$
$N_{2}^{-}-C_{11}^{\alpha}-C_{13}^{\prime}-O_{4}^{\prime}$	$12.1(2) \psi_{11}^{22}$
$C_{1,-}$	$-81.6(3)\theta'_{3}$
$O_{a} - C_{a} - C_{a}^{\alpha} - C_{a}^{\beta}$	-53.0(3)
$0 - C'_{\mu} - C^{\alpha}_{\mu} - C^{\beta}_{\mu}$	127.9 (3)
-4 -15 -11 -12	121 2 (3)

the two enantiomorphic forms of the structure. The atomic coordinates of the solved structure were used.

Corrections were taken into account by changing the sign of the imaginary part f''. R changed very little from the original 0.037 to $R^+ = 0.036$, $R^- = 0.036$. The values for Cu K α radiation for O, C and N were taken from Cromer & Liberman (1970). The slight deviation of R from the original indicated that the proposed structure determined by MULTAN was in the correct orientation (Hamilton, 1956; Bijvoet, 1949).

Table 1 gives the atomic parameters, Table 2 bond lengths and angles and Table 3 torsion angles.*

Discussion and molecular conformation

Several five-membered ring systems, including pyrrolidine, are not planar. Their conformations can be described according to their symmetry elements such as C_s (envelope) or C_2 (half-chair) forms (Kilpatrick, Pitzer & Spitzer, 1947; Pitzer & Donath, 1960; Mitsui, Tsuboi & Iitaka, 1969; Sabesan & Venkatesan, 1971; Balasubramanian, Lakshminarayanan, Sabesan, Tegoni, Venkatesan & Ramachandran, 1971; Abraham & McLauchlan, 1962; Deslauriers & Smith, 1974; Ashida & Kakudo, 1974). Secondly, an approximate symmetry, in which C^{α} , C^{β} and very often C^{γ} are situated above or below a best plane of the ring is mostly encountered. A third factor is the direction of the shift of the atom from the plane in relation to the carboxyl C' atom (-endo or -exo). Finally, proline rings can be divided into two classes. In class A the dihedral angle χ_1 takes negative values, while in class B the values are positive (Balasubramanian et al., 1971).

In his spectroscopic studies, Oster (1973) stated that the C^{α} atom of proline peptides of Boc-amino acids that do not possess a C^{β} atom at their side chains (Boc-Pro-Pro inclusive) shows cis-trans isomers and that *trans* is normally preferred. It is confirmed in the present paper that C^{α} in Boc-Pro-Pro takes the rare *cis* configuration for ring I and trans for ring II. The dihedral angles $\omega_1 = -7.0$ and $\omega_2 = -175.8^\circ$ are comparable to the normal ± 0 and $\pm 180^{\circ}$ for peptide bonds with a cis and trans configuration, respectively. In this structure $O'_1 - C'_5 - N'_1$ and $C^{\alpha}_6 - C'_{10} - N'_2$ are 109.3 and 118.7° , respectively, the latter being comparable with the normal 118° of bonds with a cis configuration (Pauling, 1960). This effect in the latter case can be attributed to steric repulsion between the C_6^{α} and the H atoms bonded to C_{14}^{δ} of pyrrolidine ring II (Fig. 1). C_{13}^{ν} is deformed. The angle O'_-C'_-N'_1

^{*} Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36034 (14 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

is 124.9° which is in agreement with that cited by Corey & Pauling (1953); $O'_3-C'_{10}-N'_2$ is 122.7°, almost equal to that reported by Marsh & Donohue (1967), where it is 123.5°. $N'_1-C^{\alpha}_6-C'_{10}$ and $N'_2-C^{\alpha}_{11}-C'_{15}$ are 109.7 and 110.7°, respectively, which are comparable to the usual 110°. The molecules are joined in pairs by a hydrogen bond O...OH, 2.613 Å.

Fig. 1. Schematic drawing of Boc-Pro-Pro.

Fig. 2. Intermolecular hydrogen-bond scheme in Boc-Pro-Pro. Projection on the (001) plane. $O'_3 \cdots O_5$ 2.613, $O'_3 \cdots H_1(O_5)$ 1.818 Å.

The groups $NC^{\alpha}C^{\nu}C^{\delta}$ of the two rings (I and II) are fairly planar. In both cases C^{β} is markedly displaced from the best plane and deviates by 0.45 and -0.57 Å. respectively. N' and C' for ring I and C_{11}^{α} and C_{14}^{δ} for ring II are on the same side as the carboxyl C'_{10} and C'_{15} . The displacements from their respective best plane $NC^{\alpha}C^{\nu}C^{\delta}$ are: $N'_{1} = -0.0299$, $C_{6}^{\alpha} = 0.0186$, $C_{8}^{\nu} =$ -0.0168, $C_{9}^{\delta} = 0.0280$, $C_{7}^{\beta} = 0.4471$ and $C_{10}' =$ -1.3579 Å; and N'_2 = -0.0388, $C_{11}^{\alpha} = 0.0218$, $C_{13}^{\nu} = -0.0203$, $C_{12}^{\beta} = -0.5682$ and $C_{15}^{\prime} = 1.4425$ Å. This prolyl residue can, therefore, be regarded as C_{s} - C^{ν} -endo (C^{β} -exo). The positive torsion angles $\chi_1 =$ 27.0° and $\chi_{11} = 38.4^{\circ}$ imply that Boc-Pro-Pro belongs to conformation B. The other dihedral angles are $\chi_2 =$ $-31 \cdot 1, \chi_3 = 22 \cdot 7, \chi_4 = -5 \cdot 3, \theta_1 = -12 \cdot 9, \omega_1 = -7 \cdot 0,$ $\varphi_1 = -66 \cdot 6, \ \psi_1 = -39 \cdot 4, \ \psi_2 = 141 \cdot 4^\circ$ (ON group) and $\chi_{22} = -35 \cdot 7, \chi_{33} = 18 \cdot 9, \chi_{44} = 5 \cdot 9, \theta_2 = -27 \cdot 9, \omega_2 = -175 \cdot 8, \varphi_2 = -95 \cdot 1, \psi_{22} = -168 \cdot 7$ (OH group), $\psi_{11} = 12 \cdot 1^\circ$. It is noted that $\varphi_2 = -95 \cdot 1^\circ$ and $\theta_2 = -27 \cdot 9^\circ$ are widened more than usual $[-45 \text{ to } -75^{\circ} \text{ and } 15^{\circ},$ respectively, according to Balasubramanian et al. (1971)]. The negative value of ψ_1 indicates that Boc-Pro-Pro belongs to the α -helix type of proline compounds, whereas the collagen-type prolines exhibit positive ψ_1 values in the range +150 to +180° (Hospital, Courseille, Leroy & Roques, 1979). Boc-Pro-Pro can be compared to N-propionylproline (Kamwaya, Oster & Bradaczek, 1981) and Boc-Gly-Pro (Marsh, Murthy & Venkatesan, 1977), where ψ_1 is -5.8° and -24.7° respectively, but differs from Boc-Ala-Pro/H₂O (Kamwaya, 1980) which shows collagen-like peculiarities with $\psi_1 = 160.9^{\circ}$.

Fig. 2 is a packing diagram.

References

- ABRAHAM, R. J. & MCLAUCHLAN, K. A. (1962). *Mol. Phys.* 5, 195–203.
- Allen, F. H., Rogers, D. & Troughton, P. G. H. (1971). Acta Cryst. B27, 1324–1337.
- ASHIDA, T. & KAKUDO, M. (1974). Bull. Chem. Soc. Jpn, 47, 1129–1133.
- BALASUBRAMANIAN, A. V., LAKSHMINARAYANAN, A. V., SABESAN, M. N., TEGONI, G., VENKATESAN, K. & RAMACHANDRAN, G. N. (1971). *Int. J. Protein Res.* **3**, 25–33.
- BIJVOET, J. M. (1949). Proc. K. Ned. Akad. Wet. B52, 313-314.
- Corey, R. B. & PAULING, L. (1953). Proc. R. Soc. London Ser. B, 141, 10–33.
- CROMER, D. T. & LIBERMAN, D. (1970). Los Alamos Scientific Laboratory, Univ. of California, Report LA 4403, UC-34.
- Deslauriers, R. & Smith, I. C. P. (1974). J. Biol. Chem. 249, 7006-7010.
- DREISSIG, W. (1969). Dissertation, Freie Universität Berlin.
- HAMILTON, W. C. (1956). Acta Cryst. 18, 502–510.
- HOSPITAL, M., COURSEILLE, C., LEROY, F. & ROQUES, B. P. (1979). *Biopolymers*, **18**, 1141–1148.

- KAMWAYA, M. E. (1980). Dissertation, Freie Universität Berlin.
- KAMWAYA, M. E., OSTER, O. & BRADACZEK, H. (1981). Acta Cryst. B37, 364–367.
- KARLE, J. & HAUPTMAN, H. (1956). Acta Cryst. 9, 635-651.

KILPATRICK, J. E., PITZER, K. S. & SPITZER, R. (1947). J. Am. Chem. Soc. 69, 2483–2488.

- MAIN, P., WOOLFSON, M. M., LESSINGER, L., GERMAIN, G. & DECLERCQ, J. P. (1977). MULTAN 77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain-la-Neuve, Belgium.
- MARSH, R. E. & DONOHUE, J. (1967). Adv. Protein Chem. 22, 235–256.
- MARSH, R. E., MURTHY, M. R. N. & VENKATESAN, K. (1977). J. Am. Chem. Soc. 99, 1251–1256.
- MITSUI, Y., TSUBOI, M. & IITAKA, Y. (1969). Acta Cryst. B25, 2182-2192.

OSTER, O. (1973). Dissertation, Universität Tübingen.

- PAULING, L. (1960). The Nature of the Chemical Bond, p. 281. Ithaca: Cornell Univ. Press.
- PITZER, K. S. & DONATH, W. E. (1960). J. Am. Chem. Soc. 81, 3213-3219.
- SABESAN, M. N. & VENKATESAN, K. (1971). Z. Kristallogr. 134, 230–242.
- SCHIMMEL, P. R. & FLORY, P. J. (1968). J. Mol. Biol. 34, 105–120.
- STEWART, J. M., KRUGER, G. J., AMMON, H. L., DICKINSON, C. & HALL, S. R. (1976). XRAY 76. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
- WILLIS, B. T. M. & PRYOR, A. W. (1975). Thermal Vibrations in Crystallography, pp. 101-102. Cambridge Univ. Press.
- WILSON, A. J. C. (1942). Nature (London), 150, 151-152.

Acta Cryst. (1981). B37, 1568-1571

The Structure of the 1,4,7,10,13,16-Hexaoxacyclooctadecane (18-Crown-6) Bis(dimethyl sulphone) Complex

By Judith A. Bandy (née Herbert) and Mary R. Truter

Molecular Structures Department, Rothamsted Experimental Station, Harpenden, Hertfordshire AL5 2JQ, England

AND IN PART F. VÖGTLE

Institut für Organische Chemie und Biochemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Federal Republic of Germany

(Received 1 December 1980; accepted 30 January 1981)

Abstract

 $C_{12}H_{24}O_6.2C_2H_6O_2S$ is monoclinic, $P2_1/n$, with a = 8.852 (4), b = 16.440 (8), c = 8.389 (2) Å, $\beta =$ 107.39 (2)°, U = 1165.0 Å³, Z = 2, $D_m = 1.26$, $D_c =$ 1.29 Mg m⁻³. Final R = 0.049 for 1902 observed reflections. The centrosymmetrical 18-crown-6 molecule has approximately D_{3d} symmetry; one methyl group of each dimethyl sulphone molecule yields three $C-H\cdots O$ contacts of 2.47 (4), 2.48 (4) and 2.62 (4) Å to alternate O atoms.

Introduction

The macrocyclic polyether, 18-crown-6, which was first synthesized by Pedersen (Pedersen, 1967) has proved a versatile complexing agent, not only for cations of suitable radius, approximately 0.8 Å and larger, but also as an acceptor of hydrogen bonds from

0567-7408/81/081568-04\$01.00

O-H, N-H, and even C-H groups, as in the compounds formed with the dimethyl ester of acetylenedicarboxylic acid (Goldberg, 1975) or that with malononitrile (Kaufman, Knöchel, Kopf, Oehler & Rudolph, 1977); the compound can be purified *via* its complex with acetonitrile (Gokel, Cram, Liotta, Harris & Cook, 1974). Recently, Vögtle & Müller (1980) have reported a variety of molecular complexes with this and other crown ethers observing, as had Pedersen (1971) in his investigation of thiourea/crown interactions, a variety of stoichiometries. A crystalline complex having stoichiometry (2:1) dimethyl sulphone: 18-crown-6 is the subject of the present study.

It was necessary to coat the crystals in Araldite to lessen decomposition in air; even so, two crystals were required for complete collection of intensities. Observations were collected on an Enraf-Nonius CAD-4 diffractometer with monochromated Mo Ka radiation $(\lambda = 0.70926 \text{ Å})$. No absorption correction was © 1981 International Union of Crystallography